Zachariasen, W. H. (1967). Acta Cryst. 23, 558–564.
Zhou, X.-G., Wu, Z.-Z. & Jin, Z.-S. (1992). J. Organomet. Chem. 431, 289–296.

Acta Cryst. (1998). C54, 627-628

Co-Crystallized (Macrocyclic tetraamine)bis(thiocyanato-N)nickel(II) Complexes

KI YOUNG CHOI,^{*a*} DONG WON KIM,^{*b*} KYUNG-HAN KIM,^{*c*} MI-RAN OH^{*c*} AND IL-HWAN SUH^{*c*}

^aDepartment of Chemistry, Mokwon University, Taejon 301-729, Korea, ^bDepartment of Chemistry, Chungbuk National University, Cheongju 360-763, Korea, and ^cDepartment of Physics, Chungnam National University, Taejon 305-764, Korea. E-mail: ihsuh@hanbat.chungnam. ac.kr

(Received 6 May 1997; accepted 19 November 1997)

Abstract

In (2,7,9,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)bis(thiocyanato-N)nickel(II) (2,5,9,12tetramethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)bis-(thiocyanato-N)nickel(II) diacetonitrile solvate, [Ni L^1 - $(NCS)_2][NiL^2(NCS)_2].2CH_3CN$, where L^1 and L^2 are isomeric tetraazacyclotetradecane ligands $(C_{14}H_{32}N_4)$, each of the co-crystallized complex molecules has an NiN₄ square plane involving the four N atoms of the secondary amine. In each of the two isomeric complexes, the two thiocyanate ligands coordinate axially through their N atoms.

Comment

In the structure of $[NiL^1(NCS)_2][NiL^2(NCS)_2].2CH_3$ -CN, (I), shown in Fig. 1, the ligand skeleton of each complex contains two *gauche* five-membered chelate rings and two six-membered chelate rings in chair conformations.

The Ni^{II} ion in each complex occupies a crystallographic inversion centre and therefore the methyl

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound showing the atom-labelling scheme. The asymmetric unit is indicated by filled bonds. The displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.

Acta Crystallographica Section C ISSN 0108-2701 © 1998 groups on the symmetry-related chelate rings are mutually anti with respect to the NiN₄ plane. The N-Ni-N angles of the six-membered chelate rings [96.03 (14) and $95.1(2)^{\circ}$ are larger than those of the five-membered chelate rings [84.0(1) and 84.9(2)°]. Each centrosymmetric complex has an octahedrally coordinated Ni^{II} centre with Ni-N(secondary amine) distances of 2.051 (4)-2.103 (3) Å, which are significantly longer than in corresponding square-planar complexes, but normal for octahedral complexes of this type (Cramer et al., 1976; Mochizuki & Kondo, 1995). The axial Ni—N(thiocyanato) distances, Ni1—N11 [2,108 (4) Å] and Ni2-N21 [2.109 (4) Å], are similar to each other. Each Ni-N(thiocyanato) linkage is bent slightly off the perpendicular to the NiN₄ plane, by $0.6(2)-3.3(2)^{\circ}$ for Ni1—N11 and by $1.2(2)-1.5(2)^{\circ}$ for Ni2—N21. The Ni—N—C(thiocyanato) angles are 171.8 (4) (Ni1— N11-C11) and 165.1 (4)° (Ni2-N21-C21).

Experimental

The isomeric ligands L^1 and L^2 were prepared by a slight modification of a known method (Hay & Jeragh, 1977). A methanol solution (20 ml) of the isomeric ligands (256 mg, 0.5 mmol) and NiCl₂.6H₂O (119 mg, 0.5 mmol) was heated at reflux for 1 h. KSCN (97 mg, 1 mmol) was then added to the solution. The resulting solution was taken to dryness and the solid obtained dissolved in acetonitrile-water (1:1, 10 ml). When this mixture was allowed to stand at room temperature for a period of several days, violet crystals precipitated.

Compound (I)

Crystal data	
2[Ni(NCS) ₂ (C ₁₄ H ₃₂ N ₄)] 2C ₂ H ₃ N $M_r = 944.69$ Triclinic $P\overline{1}$ a = 9.999 (1) Å b = 13.867 (2) Å c = 8.911 (4) Å $\alpha = 90.81 (2)^{\circ}$ $\beta = 91.18 (2)^{\circ}$ $\gamma = 104.91 (1)^{\circ}$ $V = 1193.5 (6) Å^{3}$ Z = 1 $D_x = 1.314 \text{ Mg m}^{-3}$ D_m not measured	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 11.35-14.10^{\circ}$ $\mu = 1.005 \text{ mm}^{-1}$ T = 288 (2) K Block cut from a larger crystal $0.36 \times 0.20 \times 0.20 \text{ mm}$ Violet
Data collection	
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans	$R_{int} = 0.046$ $\theta_{max} = 24.97^{\circ}$ $h = -11 \rightarrow 11$
Absorption correction: none	$k = 0 \rightarrow 16$
4374 measured reflections	$l = -10 \rightarrow 10$
4183 independent reflections	3 standard reflections
2576 reflections with	frequency: 240 min

intensity variation: 2.0%

 $l > 2\sigma(l)$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.058$	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.107$	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.270	Extinction correction: none
4183 reflections	Scattering factors from
257 parameters	International Tables for
H atoms constrained	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$	
+ 0.4 <i>P</i>]	
where $P = (F_0^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Ni1—N11	2.108 (4)	Ni2—N21	2.109 (4)
Ni1—N12	2.051 (4)	Ni2—N22	2.064 (4)
Ni1—N13	2.103 (3)	Ni2—N23	2.070 (4)
S1C11	1.623 (5)	S2C21	1.633 (5)
N11C11	1.141 (5)	N21C21	1.140 (5)
N12N11N13	96.03 (14)	N22Ni2N23	95.1 (2)
N12—Ni1—N11	89.4 (2)	N22—Ni2—N21	88.5 (2)
N13—Ni1—N11	93.32 (15)	N23—Ni2—N21	88.8 (2)
N11—C11—S1	177.8 (5)	N21—C21—S2	177.7 (5)

The crystal was a cylinder $(0.36 \times 0.20 \times 0.20 \text{ mm})$ whose axis was mounted parallel to the diffractometer φ axis. As the possible variation as a function of φ is small (<7%). no corrections for absorption were applied. The acetonitrile H atoms were located from a circular difference Fourier synthesis, while others were included at calculated positions. H-atom positional and displacement parameters were allowed to ride on their parent atoms and fixed, except for the positional parameters of the H atoms of an acetonitrile solvent molecule, which were refined as part of a rigid group.

Data collection: SDP (Frenz, 1985). Cell refinement: SDP. Data reduction: SDP. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976) in NRCVAX (Gabe et al., 1989). Software used to prepare material for publication: NRCVAX.

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Korea (1996, Project No. BSRI-96-3425).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1168). Services for accessing these data are described at the back of the journal.

References

- Cramer, R. E., Van Doorne, W. & Huneke, J. F. (1976). Inorg. Chem. 15, 529-534.
- Frenz, B. A. (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Hay, R. W. & Jeragh, B. (1977). J. Chem. Soc. Dalton Trans. pp. 1261-1265.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mochizuki, K. & Kondo, T. (1995). Inorg. Chem. 34, 6241-6243.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.